C60F2 exists!

Olga V. Boltalina,*a* **Andrei Yu. Lukonin,***a* **Joan M. Street***b* **and Roger Taylor***c******

a Chemistry Department, Moscow State University, Moscow 119899, Russia

b Chemistry Department, The University, Southampton, UK SO17 1BJ

c The Chemistry Laboratory, CPES School, University of Sussex, Brighton, UK BN1 9QJ. E-mail: R.Taylor@sussex.ac.uk

Received (in Cambridge, UK) 5th June 2000, Accepted 11th July 2000 Published on the Web 4th August 2000

From the fluorination of [60]fullerene with K_2 **PtF₆ at 470 °C** under *ca.* 0.01 bar we have isolated (HPLC) $1,2-F_2C_{60}$, the **structure of which is confirmed by 13C NMR and a single 19F NMR** line at -148.3 ppm.

As synthons, halogenofullerenes containing very few halogen atoms are desirable, but thus far they have been unattainable. Both chlorination and bromination involve a radical cascade process which necessitates, for steric reasons, contiguous *para* (1,4) halogenation. This is terminated by *ortho* (1,2) halogenation only as a necessity for the formation of a non-radical product such as $C_{60}X_6$ (X = Br, Cl)^{1,2} or $C_{70}Cl_{10}$.³ The adjacency of the bulky halogens creates instability, and these are preferentially lost for example either in subsequent reactions4,5 or through rearrangement *e.g.* the conversion of $C_{60}Br_6$ to $C_{60}Br_8$ on standing.¹ In $C_{60}Br_8$ (and also in $C_{60}Br_{24}$)⁶ all of the bromines are in either a 1,4- or a 1,3-relationship. Thus no 1,2-dibromo- or 1,2-dichlorofullerene has been either isolated or inferred from subsequent substitutions.

By contrast, the lack of steric hindrance in fluorination permits 1,2-addition which results in contiguous activation of adjacent double bonds (through increased bond localisation). The ensuing halogenation cascade tends to cease only when a product is obtained of enhanced aromaticity (such as $C_{60}F_{18}$ or $C_{60}F_{36}$ ^{7,8} *i.e.* containing delocalised benzenoid rings.

Characterisation of bromo- and chlorofullerenes is rendered difficult by their instability towards mass spectrometry, which becomes greater the fewer halogens that are present; so far, only a FAB spectrum of $C_{60}Cl_{24}$ has been obtained.⁹ Fluorofullerenes are more stable towards mass spectrometry and the existence of $C_{60}F_n$ ($n = 18, 36$ or $48)^{8-10}$ shows that fluorines can be attached to adjacent carbon atoms without introducing undue strain. Nevertheless, as with the other halogenofullerenes noted above, *the stability decreases the fewer the number of attached fluorines*, seen for example by the appearance of lower fluorinated species (through fragmentation) in the EI mass spectrum of $\hat{C}_{60}F_{18}.^8$ In fluorination by fluorine gas, the EI mass spectrum showed a continuous spectrum of derivatives from $C_{60}F_2$ up to *ca.* $C_{60}F_{42}$ (and numerous oxygenated derivatives).11–13 However, it was unclear if the lower fluorinated species were compounds or merely fragmentation ions.

We now report the successful isolation and characterisation of $C_{60}F_2$.

[60]Fullerene (240 mg) was fluorinated with K_2PtF_6 (575 mg) and a toluene solution of the product (280 mg after prepurification by sublimation) was filtered with precautions to minimise interaction with atmospheric moisture, all as described previously.¹⁴ HPLC separation of the product was carried out using a 10 mm \times 250 mm Cosmosil Buckyprep column with elution by toluene at 4.7 ml min^{-1}. This yielded mainly $C_{60}F_{18}^8$ (elution time 37 min) together with a large number of other components, most of which are ethers. A fraction (*ca.* 1.5 mg) which eluted at 10.5 min (*cf.* 7 min for [60]fullerene) was shown by the mass spectrum (Fig. 1) to contain $C_{60}F_2$ (758 amu). The spectrum also gave peaks at 858 $[C_{60}(CF_3)_2]$, 840 $(C_{60}C_2F_5H)$, and 790 amu $(C_{60}CF_3H)$. [Formation of CF₃ radicals by fragmentation is well-known to

accompany fluorination of [60]fullerene,13,15 and is especially marked when using K_2PtF_6 ; the radicals then attack other [60]fullerene molecules.] The mass spectrum is however very misleading (as the 13C and 19F spectra show) because it *greatly* underestimates the concentration of $C_{60}F_2$ in the sample due to fragmentation (as described above), and which is severe at this fluorination level. This is shown (Fig. 1) by the peak at 720 amu being $960 \times$ the intensity of the 758 amu peak, *yet no [60]fullerene was present in the sample*. The same effect was evident in the spectra of $C_{60}F_nO$, $(n = 8,6,4)$ which due to increasing fragmentation with lower addend level, showed increased amount of [60]fullerene relative to the parent ion, along this series.14

Fig. 1 EI mass spectrum (70 eV) for $C_{60}F_2$.

The IR spectrum (KBr, Fig. 2) shows two sharp peaks at 1070 and 1035 cm^{-1} in the C–F stretching region, and also sharp bands at 770, 724, 648, 594, 527 and 500 cm⁻¹. The very simple spectrum is consistent with a highly symmetrical structure, and the strong band at 527 cm^{-1} is characteristic of unaddended [60]fullerene,¹⁶ which the present structure closely resembles.

The ¹⁹F NMR spectrum (Fig. 3, 338.9 MHz, CDCl₃) showed a singlet at $-148.\overline{3}$ ppm together with two very small peaks at -67.9 and -69.7 ppm, which are typical of CF₃-containing [60]fullerenes. The peak area intensities indicate that these derivatives constitute *ca.* 6% of the total fluorinated fullerene present, which further emphasises the misleading nature of the EI mass spectrum (see above).

This singlet thus falls in the range obtained for fluorinated [60]fullerenes, *e.g.* $-(132-158)$ for C₆₀F₁₈ and $-(130-166)$ ppm for $C_{60}F_{36}$. 1,2-Isomers of [60]fullerene are more stable than 1,4-isomers, since the latter contain a destabilising double bond in a pentagon and are obtained only when the addend is large. Thus due to the difference in addend size, methylation gives a mixture of 1,2- and 1,4-dimethyl derivatives, whereas benzylation gives 1,4-addition.¹⁷ Since fluorine is smaller than

Fig. 3 ¹⁹F NMR spectrum (338.9 MHz) for $C_{60}F_2$.

carbon, there is no advantage, either thermodynamic or kinetic, in forming the 1,4-isomer.

The location of the 19F NMR peak is also consistent with a 1,2- rather than the 1,4-isomer. In the latter, each sp3-hybridised carbon bearing the fluorine is surrounded by *three* sp2 hybridised carbons (which are more electron withdrawing than sp³), whereas there are only *two* in the 1,2-isomer. This differential effect is clearly seen in the $C_{60}F_{18}$ peak positions which are -132 , -140 (av.) and -158 ppm for C–F bonds having 2, 1, and 0 sp² neighbours,⁹ or in $T\hat{C}_{60}F_{36}$ where they are -138 (av.) and $-\overline{155}$ ppm for C–F bonds having 1 and 0 sp² neighbours.18 Thus for the 1,4-isomer the peak would be expected to appear more downfield, the above data suggesting a value of $-(120-130)$ ppm.

Final proof that we have isolated the 1,2-isomer comes from the 13C NMR spectrum (Fig. 4). Obtaining such spectra for Fcontaining compounds requires F-decoupling which is unavailable, nevertheless for $C_{60}F_{18}$ we obtained a spectrum showing singlets for γ -carbons (and those more remote) relative to the

Fig. 4 ¹³C NMR spectrum for $C_{60}F_2$.

(F)C_{α} carbons. Whereas 1,4-F₂C₆₀ (C_s symmetry) requires in the sp² region (29–3) = (26 \times 2 C lines, 1,2-F₂C₆₀ (C_{2v}) symmetry) requires 3×2 C and $(13 - 1) = 12 \times 4$ C lines. Our spectrum (which required 90 h acquisition time) shows 12×2 C lines at 146.54, 146.50, 146.24, 145.08, 145.01, 144.54 (two coincident), 142.53, 142.23, 142.14, 141.62, 139.32, 137.85. Lines of 2 C intensity appeared at 141.16 and 138.35. Other lower intensity lines at δ_c 144.23, 143.79, 143.36, 141.29 and 141.20 were barely above background and may not be real. The compound is thus fully confirmed as the 1,2-isomer. No peak is seen in the sp³ region due to coupling with fluorine.

In early work with F_2 -fluorinated [60] fullerene, treatment of the crude product with either acetone or THF gave a product showing a single ¹⁹F NMR line at *ca.* -150.5 ppm, and two sharp IR bands at 1067 and 1035 cm⁻¹; a single line NMR was also obtained by treatment of $C_{60}F_{48}$ with diethyl ether.¹⁰ We conjectured that this line could be due to $C_{60}F_{60}$,¹¹ but later work showed this to be unlikely.¹⁹ Since both the NMR line and especially the IR peaks for $\dot{C}_{60}F_2$ are remarkably similar to those described above, $C_{60}F_2$ could conceivably be the species responsible in the earlier work. However, the availability now of a defined HPLC retention time for $C_{60}F_2$ means that repetition of the earlier work and separation of the products may provide an answer. We plan to undertake this work.

We thank the Royal Society for a Joint Project grant, NATO for additional support, and Dr Anthony Avent for the 13C NMR spectrum.

Notes and references

- 1 P. R. Birkett, P. B. Hitchcock, H. W. Kroto, R. Taylor and D. R. M. Walton, *Nature*, 1992, **357**, 479.
- 2 P. R. Birkett, A. G. Avent, A. D. Darwich, H. W. Kroto, R. Taylor and D. R. M. Walton, *J. Chem. Soc., Chem. Commun.*, 1993, 1230.
- 3 P. R. Birkett, A. G. Avent, A. D. Darwich, H. W. Kroto, R. Taylor and D. R. M. Walton, *J. Chem. Soc., Chem. Commun.*, 1995, 683.
- 4 A. G. Avent, P. R. Birkett, J. D. Crane, A. D. Darwich, G. J. Langley, H. W. Kroto, R. Taylor and D. R. M. Walton, *J. Chem. Soc., Chem. Commun.*, 1994, 1463.
- 5 P. R. Birkett, A. G. Avent, A. D. Darwich, H. W. Kroto, R. Taylor and D. R. M. Walton, *Tetrahedron*, 1996, **52**, 5235.
- 6 F. N. Tebbe, R. L. Harlow, D. B. Chase, D. L. Thorn, G. C. Campbell, J. C. Calabrese, N. Herron, R. J. Young and E. Wasserman, *Science*, 1992, **256**, 822.
- 7 O. V. Boltalina, A. Ya. Borschevskii, L. V. Sidorov, J. M. Street and R. Taylor, *Chem. Commun.*, 1996, 529.
- 8 A. Adamson, E. G. Hope, J. H. Holloway and R. Taylor, *Fullerene Science and Technology*, 1997, **5**, 629.
- 9 O. V. Boltalina, V. Yu. Markov, R. Taylor and M. P. Waugh, *Chem. Commun.*, 1996, 2549.
- 10 A. A. Gakh, A. A. Tuinman, J. L. Adcock, R. A. Sachleben and R. A. Compton, *J. Am. Chem. Soc.*, 1994, **116**, 819; O. V. Boltalina, L. N. Sidorov, V. F. Bagryantsev, V. A. Seredenko, A. S. Zapolskii and R. Taylor, *J. Chem. Soc., Perkin Trans. 2*, 1996, 2275.
- 11 J. H. Holloway, E. G. Hope, R. Taylor, G. J. Langley, A. G. Avent, T. J. Dennis, J. P. Hare, H. W. Kroto and D. R. M. Walton, *J. Chem. Soc., Chem. Commun.*, 1991, 966.
- 12 R. Taylor, G. J. Langley, J. H. Holloway, E. G. Hope, A. K. Brisdon, H. W. Kroto and D. R. M. Walton, *J. Chem. Soc., Perkin Trans. 2*, 1995, 181.
- 13 R. Taylor, G. J. Langley, J. H. Holloway, E. G. Hope, H. W. Kroto and D. R. M. Walton, *J. Chem. Soc., Chem. Commun.*, 1993, 875.
- 14 O. V. Boltalina, A. Yu. Lukonin, A. G. Avent, J. M. Street and R. Taylor, *J. Chem. Soc., Perkin Trans. 2*, 2000, 683.
- 15 A. A. Tuinman, P. Mukherjee, J. L. Adcock, R. L. Hettich and R. N. Compton, *J. Phys. Chem.*, 1992, **96**, 7584.
- 16 J. P. Hare, T. J. Dennis, H. W. Kroto, R. Taylor, A. W. Allaf, S. Balm and D. R. M. Walton, *J. Chem. Soc., Chem. Commun.*, 1991, 412.
- 17 For references and Schlegel diagrams see pp. 75–76 in R. Taylor, '*Lecture Notes on Fullerene Chemistry: A Handbook for Chemists*', Imperial College Press, 1999.
- 18 O. V. Boltalina, M. Bühl, A. Khong, M. Saunders, J. M. Street and R. Taylor, *J. Chem. Soc., Perkin Trans 2*, 1999, 1475.
- 19 H. Selig, K. Kniaz, G. B. M. Vaughan, J. E. Fischer and A. B. Smith, *Macromol. Symp.*, 1994, **82**, 89; K. Kniaz, J. E. Fischer, H. Selig, G. B. M. Vaughan, W. J. Romanov, D. M. Cox, S. K. Chowdhury, J. P. McCauley, R. M. Strongin and A. B. Smith, *J. Am. Chem. Soc.*, 1993, **115**, 6060.